
www.latticesemi.com 1 RD1129_1.1

January 2015 Reference Design RD1129

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
This section provides an overview of the MachXO2 Embedded Configuration Access (ECA) demo running from the
LatticeECP3™ Versa Evaluation Board to the MachXO2™ Pico Evaluation Board. The demo shows how the
MachXO2 Embedded Configuration Access reference design is implemented on a microcontroller (in this case the
LatticeMico32™) and accesses the MachXO2 via an I2C bus to perform the following operations:

• Program the MachXO2 with a JEDEC file

• Read usercode and other device registers

• Update EBR init values in the User Flash Memory (UFM)

• Read/write pages in the UFM

Note: See TN1204, MachXO2 Programming and Configuration Usage Guide and TN1205, Using User Flash Mem-
ory and Hardened Control Functions in MachXO2 Devices, for further information on the MachXO2 configuration
command capabilities.

The demo shows the capabilities of programming a blank device with an initial design (or reprogramming with an
updated design) as well as reading the MachXO2 DeviceID, usercode and other documented capabilities. These
features are especially attractive in embedded systems where the MachXO2 device needs to be programmed or
configured at run time or in pin-limited packages where a separate MachXO2 JTAG interface is not available.

The reference design provides an alternate method to the traditional ispVM™ Embedded tools. The ispVM Embed-
ded package is adapted from the Windows/Linux based ispVM tool, which is targeted for operation as an applica-
tion on a PC. The assumptions of operating in a PC environment do not always port well to the traditional
embedded microcontroller environment, where such configuration of an MachXO2 would be applicable. This demo
shows the routines performing configuration operations through pre-defined (and tested) methods (i.e. these ECA
routines). Reusing these ‘C’ routines will be more economical to the user than incurring the expense of coding,
testing and debugging custom routines based on TN1204, MachXO2 Programming and Configuration Usage
Guide and TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices.

This demo provides a hands-on example for compiling the MachXO2 Embedded Configuration Access reference
design routines, running the routines, accessing a MachXO2 device via I2C and performing various configuration
operations on the device.

Figure 1 shows the LatticeECP3/MachXO2 I2C demo setup.

MachXO2 I2C Embedded
Programming Access Firmware

www.latticesemi.com/dynamic/view_document.cfm?document_id=39085
www.latticesemi.com/dynamic/view_document.cfm?document_id=39086
www.latticesemi.com/dynamic/view_document.cfm?document_id=39086
www.latticesemi.com/dynamic/view_document.cfm?document_id=39085
www.latticesemi.com/dynamic/view_document.cfm?document_id=39085
www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

2

MachXO2 I2C Embedded
Programming Access Firmware

Figure 1. LatticeECP3/MachXO2 I2C Demo Setup

The serial port from the LatticeECP3 Versa Evaluation Board provides the user interface. The serial port is imple-
mented using a USB connection. A mini-USB cable connects the LatticeECP3 Versa Evaluation Board to a PC.
The PC runs a USB to a virtual COM port program that allows the HyperTerminal to connect to the LatticeECP3
Versa Evaluation Board over the USB cable.

The LatticeMico32 soft microprocessor in the LatticeECP3 device interfaces to the MachXO2 device with an I2C
bus implemented as a three-wire cable between the two boards.

Implementation
The purpose of the MachXO2 Embedded Configuration Access demo is to provide a working example of accessing
MachXO2 Embedded Function Block (EFB) configuration logic via an I2C interface. The demo uses interactive
menus to allow the user to try various use-case operations that would represent typical embedded accesses to the
MachXO2:

• Program the MachXO2 with a JEDEC file

• Read usercode and other device registers

• Update EBR init values in the UFM

• Read/write pages in the UFM

This reference design is implemented using the LatticeECP3 Versa Evaluation Board as the system control proces-
sor and the MachXO2 Pico Evaluation Board as the target MachXO2 device to access. A cable connects the I2C
buses between the two boards. See Appendix A. I2C Connector on the LatticeECP3 Versa Evaluation Board and
Appendix B. I2C Connector on the MachXO2 Pico Evaluation Board for specific board connector details.

USB Serial Port
Cable for Menus

LatticeECP3 Versa
Evaluation Board

I2C Cable
MachXO2 Pico

Evaluation BoardDemo Menus

3

MachXO2 I2C Embedded
Programming Access Firmware

Figure 2. I2C Connection Between Evaluation Boards

The user menus are provided by the LatticeMico32 demo software running on the LatticeECP3 Versa Evaluation
Board. The user selects various demo options and the commands are executed over the I2C bus to perform the
specific MachXO2 operation. Figure 3 shows the hardware/IP architecture of the demo.

Figure 3. Demo Architecture

The LatticeMico32 MSB processor system runs the entire user interface software from on-chip program memory.
The processor system also contains the UART component that provides the serial port communications to the
external PC. An I2C master component provides access to the MachXO2 configuration block via the built-in I2C
port. The program memory of the MSB contains all the MachXO2 access drivers, commands and two JEDEC files
for programming the MachXO2 device with differently behaving designs, in order to visually see that a new design
has been loaded.

LatticeECP3 Versa Evaluation Board

MachXO2 Pico Evaluation Board

LatticeECP3

Lattice-
Mico32

MachXO2

SCL

SCL
SDA

SDA

C8

B8

I2C J13

U3

GND

Mico32 demo software running on the ECP3

s the hardware/IP architecture of the demo.

Programming
Memory

WISHBONE Bus

I2C Master

LatticeMico32 GPIO UART

LatticeECP3 Versa Evaluation Board

MachXO2 Pico Evaluation Board

MSB

I2C Slave

LCD User Logic

Config.
Flash

UFM

I2C

EBR

Config.
Registers

4

MachXO2 I2C Embedded
Programming Access Firmware

Figure 4. Software Architecture

The flow of control is handled entirely from the menus in the user application layer. The user invokes ECA API rou-
tines using the menu options. The menu options call the APIs and pass a handle to the specific MachXO2 device to
on which the operations will be performed. The ECA APIs implement the algorithms specified in TN1204,
MachXO2 Programming and Configuration Usage Guide and TN1205, Using User Flash Memory and Hardened
Control Functions in MachXO2 Devices for performing macro operations such as erase configuration Flash, read
usercode, etc. The ECA APIs in turn call ECA commands, which implement the specific sequence of configuration
command opcodes and operands, as per TN1204 and TN1205, for doing one specific operation. The ECA com-
mand routines then invoke, via function pointers in the MachXO2 handle, the specific interface driver routines to
start a transfer, write bytes/read bytes and stop a transfer. The platform-specific driver routines are then invoked to
perform the I2C bus transfers to the specific MachXO2 device.

The XO2_ECA routines are provided as source code and are built into the menu application running on the
LatticeECP3 Versa Evaluation Board. An internal data structure holds the specific parameters for each supported
MachXO2 device, such as the number of pages in the UFM, or configuration Flash erase time, etc. These parame-
ters are used by the APIs and commands when performing operations.

Known Limitations
This section describes some of the limitations of the MachXO2 Embedded Configuration Access demo.

Compression
The JEDEC data could be compressed, greatly reducing code storage requirements. A simple run-length encoding
compression routine has been shown to be very effective (2x to 4x compression) but is not implemented in this ver-
sion.

XO2_ECA

Demo Application Layer (Menus)

MachXO2, JEDEC #1, JEDEC #2

ECA APIs

Program(), ReadBackCfg(), ReadBackUFM(),
WriteUFM(), …

I2C

ECA Commands

readDevId(), CfgErase(), CfgWritePage(),
UFMErase(), UFMWritePage(),…

Platform Interface Driver Routines

start(), stop(), read(), write()

MachXO2
Parameter
Database

MachXO2

www.latticesemi.com/dynamic/view_document.cfm?document_id=39085
www.latticesemi.com/dynamic/view_document.cfm?document_id=39086
www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

5

MachXO2 I2C Embedded
Programming Access Firmware

Only I2C
Only I2C is demonstrated at this time. The software framework is set up to support other interfaces, such as SPI, to
the MachXO2 device, but only a single I2C interface is used in this demo.

Transparent Mode Programming
The MachXO2 Pico Evaluation Board only supports MachXO2 Flash programming in Transparent mode. The
power to the I2C bus on the board is controlled by a pin on the MachXO2 device. If the MachXO2 does not have a
user design in it to drive this output pin high, the I2C bus will not have the required pull-ups, and other devices con-
nected to the I2C bus will not operate properly. Therefore, Offline mode cannot be demonstrated with a standard
MachXO2 Pico Evaluation Board because the user design is halted, and all MachXO2 I/Os default to tri-state out-
put low, disabling the I2C. A hardware modification can be made to the MachXO2 Pico Evaluation Board that pro-
vides constant pull-up voltage to the I2C bus. See Appendix C. I2C Bus Pull-up Modification for this modification if
offline mode operation is desired.

Setup
This section describes how to connect and set up the MachXO2 Embedded Configuration Access demo.

General Warning
Please observe the following important safety items:

• Follow ESD precautions

• Use only the power supply provided with the LatticeECP3 Versa Evaluation Board. Do not use a generic 12V
supply.

Required Demo Components

• LatticeECP3 Versa Evaluation Board

• 12V DC power supply for LatticeECP3 Versa Evaluation Board

• Mini USB cable for LatticeECP3 Versa Evaluation Board

• MachXO2 Pico Evaluation Board

• Mini USB cable to power the MachXO2 Pico Evaluation Board

• I2C cable (three-wire cable connecting the LatticeECP3 Versa Evaluation Board to the MachXO2 Pico Evaluation
Board – see Appendix A. I2C Connector on the LatticeECP3 Versa Evaluation Board and Appendix B. I2C Con-
nector on the MachXO2 Pico Evaluation Board)

Project Setup
1. Unzip the reference design package.

The demo bitstream that needs to be loaded into the LatticeECP3 Versa Evaluation Board is located in
the Bitstreams directory.

LatticeECP3 Versa Evaluation Board Installation
1. Load the bitstream located in the top-level Bitstreams directory. This contains all the demo menus,

MachXO2 I2C access routines and two MachXO2 JEDEC designs to be loaded into the MachXO2.

2. Assemble the I2C cable.

3. Connect the USB cable to the PC for serial port access to the menus.

MachXO2 Pico Evaluation Board Installation
1. Connect the I2C cable.

6

MachXO2 I2C Embedded
Programming Access Firmware

2. Connect the USB cable from the MachXO2 Pico Evaluation Board to the PC for power.

3. Install an initial JEDEC design into the MachXO2 Pico Evaluation Board. The board does not provide I2C
bus power by default. A design needs to be loaded into the MachXO2 device that asserts the power
enable control line in order for the LatticeECP3 device to see the I2C bus. The JEDEC file to load is in the
Bitstreams directory. Load XO2_I2C_slave_XO2_numbers.jed.

FTDI COM Port Driver Installation
The next step is to connect the USB cable to the mini-USB connector on the front of the LatticeECP3 Versa Evalu-
ation Board. Connect the other end to an available USB slot on your PC. This will provide the connection to the
menus on the LatticeECP3 Versa Evaluation Board. You will need to install a driver provided by Future Technology
Devices International (FTDI), the manufacturer of the FT232RL device used on the LatticeECP3 Versa Evaluation
Board that converts the RS-232 UART output to USB). The driver converts the PC USB port to a COM port so that
a serial terminal program (HyperTerminal) can open the USB port and communicate over it as if it were an RS-232
port. The FTDI driver installation program can be downloaded from the FTDI website.

NOTE: Windows Vista and Windows 7 do not ship with HyperTerminal. Users will need to install a suitable serial
port terminal emulator such as PuTTY 0.60 (or newer) or the XP version of HyperTerminal.

Once the driver is installed, power up the LatticeECP3 Versa Evaluation Board by connecting the power supply.

To determine which COM port the USB serial device is mapped to, open My Computer > Properties > Hardware
> Device Manager and select Ports to see available serial ports and choose the one that is the USB Serial Port.
See the Figure 5 as an example.

Figure 5. Finding New Comm Port

Open your terminal program and select the new USB serial port. Set the communication settings to: 115000 baud,
8 data bits, No Parity, 1 stop bit (115000,8,N,1). Figures 6 and 7 show these settings for a PuTTY session.

7

MachXO2 I2C Embedded
Programming Access Firmware

Figure 6. Opening Comm Port with PuTTY

Figure 7. Comm Port Settings

After the serial port settings are configured, and power is applied to the LatticeECP3 Versa Evaluation Board, the
main menu will appear (press the LatticeECP3 Versa Evaluation Board reset button to redisplay).

Hardware Settings
For demo operation, there is no hardware configuration necessary other than connecting the I2C cable and USB
cables. This section is provided for reference or in case the LatticeECP3 Versa Evaluation Board or MachXO2 Pico
Evaluation Board has been used in other applications and their current configuration is in doubt.

LatticeECP3 Versa Evaluation Board
The only hardware indicator of demo activity is the red LED D25 blinking to indicate the system clock is running.
This indicates that the bitstream has loaded correctly and that basic logic is functional. It does not reflect the I2C or
LatticeMico32 operating status.

No other LED indicators are used at this time.

8

MachXO2 I2C Embedded
Programming Access Firmware

MachXO2 Pico Evaluation Board
The LCD is used to indicate the particular JEDEC file design that has been loaded into configuration Flash.

Demo Operation
All user interaction and demo control is through the text menus provided by the LatticeMico32 soft microprocessor.
This section will show and discuss the available menu options that demonstrate the MachXO2 configuration
accesses.

Background
There are two MachXO2 designs provided in the reference design package. Both have the same basic design.
They read bytes from an initialized EBR memory and display four characters at a time on the LCD display. One
design uses an EBR initialized with hex digits, for example ‘0123’, ‘4567’, ‘ABCD’. The other design uses an EBR
initialized with four character words (that can be spelled using only alphabetic digits of hex numbers), for example
‘DEAD’ or ‘CAFÉ’ or ‘FEED’. Each design also has a unique usercode. These differences allow the user to see the
results of loading different designs via I2C and reading back the configuration registers to verify the proper design is
loaded (i.e., usercode value).

XO2_numbers Implementation

• LCD display: “0123”, “4567”, “1111”, “2222”, etc.

• EBR init file: Hardware\XO2_Pico\Source\numbers.mem

• UserCode: 0x01234567

• TraceID: 0x12

XO2_words Implementation

• LCD display: “dead”, “beef”, “abba”, “café”, “feed”, etc.

• EBR init file: Hardware\XO2_Pico\Source\words.mem

• UserCode: 0xDEADBEEF

• TraceID: 0xAB

Menu Screen
The menu screen is the starting point for running the demo software. The user enters the letter of the operation to
execute.

Figure 8. Menu Screen

9

MachXO2 I2C Embedded
Programming Access Firmware

LED Test
The LED test simply demonstrates that the LatticeECP3 is working and that the FPGA and software running on the
LatticeMico32 are functioning correctly. The test blinks a visual indicator on the LatticeECP3 Versa Evaluation
Board to show that the software is working, even if I2C portions are having trouble. The eight discrete LEDs on the
left side light (move) up and down and the segments on the 14-segment display light, indicating proper functioning
of the LatticeECP3 software and hardware.

Running ECP3 Versa Board LED Test...

Temperature Test
The Temperature test demonstrates reading, over the I2C cable, the Texas Instruments temperature sensor device
on the MachXO2 Pico Evaluation Board. This provides a way to validate proper I2C bus operations using a third-
party device. The test prints the 12-bit register value from reading the temperature. It is not converted to Fahrenheit
or Celsius; just a raw hex value. Placing a finger on the device will dynamically change the reading.

Figure 9. I2C Temperature Display

Read MachXO2 Registers
Reading the MachXO2 configuration registers demonstrates how a host processor could interrogate the specific
MachXO2 device or design (usercode) that is running. System operation could then be altered based on the infor-
mation obtained, such as limiting features if the usercode indicates a “base” model system.

10

MachXO2 I2C Embedded
Programming Access Firmware

Figure 10. Read MachXO2 Configuration Registers

For the demonstration, the usercode is different for each MachXO2 design. The usercode value indicates:

• 0x01234567 – Design that prints number patterns to the LCD display

• 0xdeadbeef – Design that prints “words” to the LCD display

The status registers are also read and decoded to identify errors that could occur during operation.

Program with JEDEC Data
This operation reprograms the entire contents of the MachXO2 Flash (configuration, UFM and Feature Row sec-
tors) with the JEDEC file data. The design to load is chosen with ‘1’ or ‘2’. ‘1’ selects loading the MachXO2 design
that displays digits on the 4-character LCD display. ‘2’ selects loading the MachXO2 design that displays words,
using the letter digits of hexadecimal, on the 4-character LCD display.

Figure 11. Program with JEDEC File

In this example, design 1 (the initial default) is loaded. The LCD display will now show patterns of digits (0-9), read
from the EBR init values. For example: ‘0000’, ‘1111’, ‘2222’.

11

MachXO2 I2C Embedded
Programming Access Firmware

Verify
The Verify menu option enables checking of the programmed Flash. By default, it is turned off. To enable the verifi-
cation of programmed JEDEC data, press V. After each Flash sector is programmed, the pages will be read back
one at a time and compared with the programmed data. If an error is detected, programming aborts with an error.

Figure 12. Program with Verify

Update EBR Values
This selection reprograms the MachXO2 UFM sector with the JEDEC file UFM data, effectively changing the
behavior of the example MachXO2 hardware design by changing the EBR contents. The EBR contents are either
loaded with the number pattern (0-9) or the word pattern (abcd) based on previous selections of ‘1’ or ‘2’.

Figure 13. Update UFM Contents

In this example, the EBR contents in the UFM are reloaded with the data for the word pattern. The configuration
Flash sector remains unchanged and the design continues to operate in hardware. The only change is that once
programming the UFM EBR completes, the LCD will now display words, instead of the previous number pattern.

Exchange Data in the UFM
This option allows you to program a page at a time into the UFM. An incrementing pattern is used as the data to
program. After writing the page, you then can display the contents of the UFM.

12

MachXO2 I2C Embedded
Programming Access Firmware

Figure 14. UFM Page Access

For this demo, UFM writable pages start at page number 256 to avoid overwriting the EBR initial values used in the
design. In a real system, the user needs to be aware of how much EBR memory is used, and where the first avail-
able page begins. See TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices,
for a detailed description and example of planning UFM page use.

Building Hardware Designs
The pre-built LatticeECP3 bitstream containing all the demo menus, MachXO2 programming files, etc., is included
in the demo package in the top-level bitstreams directory. Only this needs to be loaded into the LatticeECP3 Versa
Evaluation Board SPI Flash for immediate demo operation. This section discusses how to rebuild the projects for
the MachXO2 and LatticeECP3 if changes or experimentation are to be done, or just to understand the overall flow.

LatticeECP3 Lattice Diamond® Project
The LatticeECP3 project is located in Hardware\ECP3_Versa\Implementation\Diamond_3.3.

The project builds the LatticeMico32 system and connects the I2C master component to the proper connector on
the LatticeECP3 Versa Evaluation Board for interfacing to the MachXO2 Pico Evaluation Board.

Figure 15. LatticeECP3 Diamond Project

www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

13

MachXO2 I2C Embedded
Programming Access Firmware

Building the project is straightforward, although the MSB platform needs to be generated first and the program
memory initialized with the demo menu code and the MachXO2 ECA routines, as well as the JEDEC data for the
two MachXO2 designs.

Programming is accomplished with the included Programmer .XCF file.

A FlashErase.xcf file is also included which will fully erase the MachXO2 to simulate I2C access to a blank device.

LatticeECP3 LatticeMico32 Platform and Software
The LatticeECP3 LatticeMico32 MSB platform emulates a typical embedded processor system. The 32-bit
LatticeMico32 processor accesses on-chip memory for program and data storage. It uses the UART for user I/O
and the I2C master component to access the MachXO2 device.

Figure 16. LatticeECP3 LatticeMico32 Platform

The LatticeMico32 MSB platform is located in:

Hardware\ECP3_Versa\MSB\soc\ MSB.msb

The ‘C’ project is located in:

\Software\Mico32\XO2ECA

After building the ‘C’ source code, be sure to deploy the software to the on-chip memory initialization file: Soft-
ware\Mico32\prog.mem and update the memory initialization file path by double-clicking on the ebr component in
MSB perspective. Run Generator to update the path in the MSB.v instantiated in the Diamond project.

MachXO2 Diamond Projects
There are two MachXO2 projects that produce different visual results, so the user can see and verify that a different
design has been loaded into the MachXO2. The MachXO2 projects for LSE (Lattice Synthesis Engine) synthesis
tool are located in \Hardware\XO2_Pico\Implementation\Diamond_3.3\.

Open the XO2_I2C_slave.ldf Diamond project file located there. One MachXO2 implementation (project) is called
XO2_numbers, the other is XO2_words. Both share common source files. The main difference is in the EBR init
value file contents and preferences to change the usercode value.

14

MachXO2 I2C Embedded
Programming Access Firmware

Figure 17. MachXO2 Diamond Project

Each builds a JEDEC file in the respective project directory:

• XO2_numbers\XO2_I2C_slave_XO2_numbers.jed

• XO2_words\XO2_I2C_slave_XO2_words.jed

The JEDEC file contents are converted into the data structure needed by the MachXO2 ECA software routines.
The conversion is done using a Windows utility jed2ecaC.exe, discussed in the following section.

The JEDEC files can also be programmed directly into the MachXO2 using the Programmer .XCF files included in
each project.

JEDEC File Conversion
The MachXO2 JEDEC file needs to be converted into a more compact, ‘C’ compilable format, for inclusion directly
in the embedded system that will be programming the MachXO2 device. The ECA routines do not expect file sys-
tem access, and so do not read the JEDEC file directly. The ECA routines expect the JEDEC file contents to be
converted to binary ‘C’ arrays, for simple and easy access to the bytes needed to be written into the MachXO2 con-
figuration Flash sector and/or UFM sector.

Note: If the targeted embedded system does have a file system, and space is not an issue, JEDEC files can be left
in their native form, and a modified version of this conversion utility could be implemented to read JEDEC files and
convert directly to the C array needed by the ECA routines. Systems running Linux or having network file access
may opt for this method. The examples provided here are for a more traditional, resource limited embedded sys-
tem that need to store all MachXO2 JEDEC data in program data memory.

An ANSI ‘C’ conversion utility is provided in source format so it can be built on any system, and adapted as needed
to parsing the MachXO2 JEDEC file. The utility is named jed2ecaC, meaning it converts a JEDEC file into an
MachXO2 ECA ‘C’ data structure containing arrays for the Configuration, UFM and Feature Row sector data. The
conversion program is located in: Software\PC\jed2ecaC.

See the ReadMe.txt file for information about running.

Execute the convert.bat batch program to generate the files needed by the demo and copy them into the
LatticeMico32 software build directory.

References
• TN1204, MachXO2 Programming and Configuration Usage Guide

• TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices

• EB56, LatticeECP3 Versa Evaluation Board User’s Guide

• EB61, MachXO2 Pico Development Kit User’s Guide

• Digital Temperature Sensor with I2C Interface (Texas Instruments Inc.)

www.latticesemi.com/dynamic/view_document.cfm?document_id=39027
www.latticesemi.com/dynamic/view_document.cfm?document_id=41110
www.latticesemi.com/dynamic/view_document.cfm?document_id=41110
www.latticesemi.com/dynamic/view_document.cfm?document_id=39085
www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

15

MachXO2 I2C Embedded
Programming Access Firmware

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History
Date Version Change Summary

January 2015 1.1 Updated to support Diamond 3.3 design software for MachXO2.

Updated to support LSE for MachXO2.

Updated LatticeECP3 LatticeMico32 Platform and Software section.
Updated information on deploying the software to the on-chip memory
initialization file.

Updated Technical Support Assistance

Updated Appendix A. I2C Connector on the LatticeECP3 Versa Evalua-
tion Board section.Updated Figure 18, I2C Connector on the
LatticeECP3 Versa Evaluation Board.

May 2012 01.0 Initial release.

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

16

MachXO2 I2C Embedded
Programming Access Firmware

Appendix A. I2C Connector on the LatticeECP3 Versa Evaluation Board
Figure 18. I2C Connector on the LatticeECP3 Versa Evaluation Board

CLK_SCL

CLK_SDA

CLK_SCL

SDA[3]

SCL[3]

J13

HEADER 3(DNP)

1
2
3

0R-0603SMT

R169

0R-0603SMT

0R-0603SMT

R170

0R-0603SMT

17

MachXO2 I2C Embedded
Programming Access Firmware

Appendix B. I2C Connector on the MachXO2 Pico Evaluation Board
Figure 19. I2C Connector on the MachXO2 Pico Evaluation Board

PROTO_K1
PROTO_K3
PROTO_M7
PROTO_N8
PROTO_B1
PROTO_B2
PROTO_C1
PROTO_C3
PROTO_C2
PROTO_D1

XO2_SPI_SN

XO2_SPI_IN
XO2_SPI_CLK

XO2_SPI_OUT

XO2_SPI_CS0

VCCIO_EXT

+3.3VorBat

XO2_TDO [pg4]USB_TDO[pg3]
USB_TDI[pg3]

XO2_TCK [pg4]
XO2_TMS [pg4]

XO2_TDI [pg4]

USB_TCK[pg3]
USB_TMS[pg3]

USB_SDA[pg3,4]
USB_SCL[pg3,4]

PROTO_B13[pg4]
PROTO_A13[pg4]
PROTO_C10[pg4]

Header

R33 0DIR33 0DI
R37 68DIR37 68DI

U3

HEADER 16X2

U3

HEADER 16X2

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
3132

R44
10k
DI

R44
10k
DI

R48 0DIR48 0DI

R2 0DIR2 0DI
R32 0DIR32 0DI

R95

0
DI

R95

0
DI

18

MachXO2 I2C Embedded
Programming Access Firmware

Appendix C. I2C Bus Pull-up Modification
The MachXO2 Pico Evaluation Board has a feature that enables low power mode by disabling unused peripheral
devices. The 3.3 V power supply for certain devices is controlled by an output pin of the MachXO2 device. The 3.3 V
supply powers the I2C bus pull-up resistors and I2C temperature device. Enabling this low power mode unfortunately
disables the I2C bus. When the MachXO2 device is unprogrammed/blank, all outputs are tri-stated pulled low, thus the
power to the I2C bus is turned off and the MachXO2 device is not accessible from the I2C Master (LatticeECP3 Versa
Evaluation Board).

In order to operate the demo in Offline mode on the MachXO2 Pico Evaluation Board, the following hardware mod-
ification can be made to ensure the I2C bus is always powered. Solder a short between C25 and R97 to enable the
I2C and SPI power supply rail provide constant 3.3 V to the I2C pull-up resistors. The following diagram illustrates
the location of the modification on the back side of the board.

Figure 20. MachXO2 Pico Evaluation Board I2C Bus Power Enable

The demo software on the LatticeECP3 Versa Evaluation Board also needs to be rebuilt in order to enable the
offline mode menu option. Uncomment the following line in main.c:

 #define ENABLE_ALL_MODES

Rebuild the Mico C/C++ project and deploy the software prog.mem so that when rebuilding the LatticeECP3
design, the new demo software is loaded into the EBR init values.

R96

U21

C25 R97

	MachXO2 I2C Embedded Programming Access Firmware
	Introduction
	Implementation
	Known Limitations

	Setup
	General Warning
	Required Demo Components
	Project Setup
	LatticeECP3 Versa Evaluation Board Installation

	MachXO2 Pico Evaluation Board Installation
	FTDI COM Port Driver Installation
	Hardware Settings

	Demo Operation
	Background
	Menu Screen
	LED Test
	Temperature Test
	Read MachXO2 Registers
	Program with JEDEC Data
	Verify
	Update EBR Values
	Exchange Data in the UFM

	Building Hardware Designs
	LatticeECP3 Lattice Diamond® Project
	LatticeECP3 LatticeMico32 Platform and Software
	MachXO2 Diamond Projects
	JEDEC File Conversion

	References
	Technical Support Assistance
	Revision History
	Appendix A. I2C Connector on the LatticeECP3 Versa Evaluation Board
	Appendix B. I2C Connector on the MachXO2 Pico Evaluation Board
	Appendix C. I2C Bus Pull-up Modification

