一、IIC主机bit控制
// Timing: Normal mode Fast mode
///////////////////////////////////////////////////////////////////////
// Fscl 100KHz 400KHz
// Th_scl 4.0us 0.6us High period of SCL
// Tl_scl 4.7us 1.3us Low period of SCL
// Tsu:sta 4.7us 0.6us setup time for a repeated start condition
// Tsu:sto 4.0us 0.6us setup time for a stop conditon
// Tbuf 4.7us 1.3us Bus free time between a stop and start condition
//
// synopsys translate_off
`include "timescale.v"
// synopsys translate_on
`include "i2c_master_defines.v"
module i2c_master_bit_ctrl (
input clk, // system clock
input rst, // synchronous active high reset
input nReset, // asynchronous active low reset
input ena, // core enable signal
input [15:0] clk_cnt, // clock prescale value
input [ 3:0] cmd, // command (from byte controller)
output reg cmd_ack, // command complete acknowledge
output reg busy, // i2c bus busy
output reg al, // i2c bus arbitration lost
input din,
output reg dout,
input scl_i, // i2c clock line input
output scl_o, // i2c clock line output
output reg scl_oen, // i2c clock line output enable (active low)
input sda_i, // i2c data line input
output sda_o, // i2c data line output
output reg sda_oen // i2c data line output enable (active low)
);
//
// variable declarations
//
reg [ 1:0] cSCL, cSDA; // capture SCL and SDA
reg [ 2:0] fSCL, fSDA; // SCL and SDA filter inputs
reg sSCL, sSDA; // filtered and synchronized SCL and SDA inputs
reg dSCL, dSDA; // delayed versions of sSCL and sSDA
reg dscl_oen; // delayed scl_oen
reg sda_chk; // check SDA output (Multi-master arbitration)
reg clk_en; // clock generation signals
reg slave_wait; // slave inserts wait states
reg [15:0] cnt; // clock divider counter (synthesis)
reg [13:0] filter_cnt; // clock divider for filter
// state machine variable
reg [17:0] c_state; // synopsys enum_state
//
// module body
//
// whenever the slave is not ready it can delay the cycle by pulling SCL low
// delay scl_oen
always @(posedge clk)
dscl_oen <= #1 scl_oen;
// slave_wait is asserted when master wants to drive SCL high, but the slave pulls it low
// slave_wait remains asserted until the slave releases SCL
always @(posedge clk or negedge nReset)
if (!nReset) slave_wait <= 1'b0;
else slave_wait <= (scl_oen & ~dscl_oen & ~sSCL) | (slave_wait & ~sSCL);
// master drives SCL high, but another master pulls it low
// master start counting down its low cycle now (clock synchronization)
wire scl_sync = dSCL & ~sSCL & scl_oen;
// generate clk enable signal
always @(posedge clk or negedge nReset)
if (~nReset)
begin
cnt <= #1 16'h0;
clk_en <= #1 1'b1;
end
else if (rst || ~|cnt || !ena || scl_sync)
begin
cnt <= #1 clk_cnt;
clk_en <= #1 1'b1;
end
else if (slave_wait)
begin
cnt <= #1 cnt;
clk_en <= #1 1'b0;
end
else
begin
cnt <= #1 cnt - 16'h1;
clk_en <= #1 1'b0;
end
// generate bus status controller
// capture SDA and SCL
// reduce metastability risk
always @(posedge clk or negedge nReset)
if (!nReset)
begin
cSCL <= #1 2'b00;
cSDA <= #1 2'b00;
end
else if (rst)
begin
cSCL <= #1 2'b00;
cSDA <= #1 2'b00;
end
else
begin
cSCL <= {cSCL[0],scl_i};
cSDA <= {cSDA[0],sda_i};
end
// filter SCL and SDA signals; (attempt to) remove glitches
always @(posedge clk or negedge nReset)
if (!nReset ) filter_cnt <= 14'h0;
else if (rst || !ena ) filter_cnt <= 14'h0;
else if (~|filter_cnt) filter_cnt <= clk_cnt >> 2; //16x I2C bus frequency
else filter_cnt <= filter_cnt -1;
always @(posedge clk or negedge nReset)
if (!nReset)
begin
fSCL <= 3'b111;
fSDA <= 3'b111;
end
else if (rst)
begin
fSCL <= 3'b111;
fSDA <= 3'b111;
end
else if (~|filter_cnt)
begin
fSCL <= {fSCL[1:0],cSCL[1]};
fSDA <= {fSDA[1:0],cSDA[1]};
end
// generate filtered SCL and SDA signals
always @(posedge clk or negedge nReset)
if (~nReset)
begin
sSCL <= #1 1'b1;
sSDA <= #1 1'b1;
dSCL <= #1 1'b1;
dSDA <= #1 1'b1;
end
else if (rst)
begin
sSCL <= #1 1'b1;
sSDA <= #1 1'b1;
dSCL <= #1 1'b1;
dSDA <= #1 1'b1;
end
else
begin
sSCL <= #1 &fSCL[2:1] | &fSCL[1:0] | (fSCL[2] & fSCL[0]);
sSDA <= #1 &fSDA[2:1] | &fSDA[1:0] | (fSDA[2] & fSDA[0]);
dSCL <= #1 sSCL;
dSDA <= #1 sSDA;
end
// detect start condition => detect falling edge on SDA while SCL is high
// detect stop condition => detect rising edge on SDA while SCL is high
reg sta_condition;
reg sto_condition;
always @(posedge clk or negedge nReset)
if (~nReset)
begin
sta_condition <= #1 1'b0;
sto_condition <= #1 1'b0;
end
else if (rst)
begin
sta_condition <= #1 1'b0;
sto_condition <= #1 1'b0;
end
else
begin
sta_condition <= #1 ~sSDA & dSDA & sSCL;
sto_condition <= #1 sSDA & ~dSDA & sSCL;
end
// generate i2c bus busy signal
always @(posedge clk or negedge nReset)
if (!nReset) busy <= #1 1'b0;
else if (rst ) busy <= #1 1'b0;
else busy <= #1 (sta_condition | busy) & ~sto_condition;
// generate arbitration lost signal
// aribitration lost when:
// 1) master drives SDA high, but the i2c bus is low
// 2) stop detected while not requested
reg cmd_stop;
always @(posedge clk or negedge nReset)
if (~nReset)
cmd_stop <= #1 1'b0;
else if (rst)
cmd_stop <= #1 1'b0;
else if (clk_en)
cmd_stop <= #1 cmd == `I2C_CMD_STOP;
always @(posedge clk or negedge nReset)
if (~nReset)
al <= #1 1'b0;
else if (rst)
al <= #1 1'b0;
else
al <= #1 (sda_chk & ~sSDA & sda_oen) | (|c_state & sto_condition & ~cmd_stop);
// generate dout signal (store SDA on rising edge of SCL)
always @(posedge clk)
if (sSCL & ~dSCL) dout <= #1 sSDA;
// generate statemachine
// nxt_state decoder
parameter [17:0] idle = 18'b0_0000_0000_0000_0000;
parameter [17:0] start_a = 18'b0_0000_0000_0000_0001;
parameter [17:0] start_b = 18'b0_0000_0000_0000_0010;
parameter [17:0] start_c = 18'b0_0000_0000_0000_0100;
parameter [17:0] start_d = 18'b0_0000_0000_0000_1000;
parameter [17:0] start_e = 18'b0_0000_0000_0001_0000;
parameter [17:0] stop_a = 18'b0_0000_0000_0010_0000;
parameter [17:0] stop_b = 18'b0_0000_0000_0100_0000;
parameter [17:0] stop_c = 18'b0_0000_0000_1000_0000;
parameter [17:0] stop_d = 18'b0_0000_0001_0000_0000;
parameter [17:0] rd_a = 18'b0_0000_0010_0000_0000;
parameter [17:0] rd_b = 18'b0_0000_0100_0000_0000;
parameter [17:0] rd_c = 18'b0_0000_1000_0000_0000;
parameter [17:0] rd_d = 18'b0_0001_0000_0000_0000;
parameter [17:0] wr_a = 18'b0_0010_0000_0000_0000;
parameter [17:0] wr_b = 18'b0_0100_0000_0000_0000;
parameter [17:0] wr_c = 18'b0_1000_0000_0000_0000;
parameter [17:0] wr_d = 18'b1_0000_0000_0000_0000;
always @(posedge clk or negedge nReset)
if (!nReset)
begin
c_state <= #1 idle;
cmd_ack <= #1 1'b0;
scl_oen <= #1 1'b1;
sda_oen <= #1 1'b1;
sda_chk <= #1 1'b0;
end
else if (rst | al)
begin
c_state <= #1 idle;
cmd_ack <= #1 1'b0;
scl_oen <= #1 1'b1;
sda_oen <= #1 1'b1;
sda_chk <= #1 1'b0;
end
else
begin
cmd_ack <= #1 1'b0; // default no command acknowledge + assert cmd_ack only 1clk cycle
if (clk_en)
case (c_state) // synopsys full_case parallel_case
// idle state
idle:
begin
case (cmd) // synopsys full_case parallel_case
`I2C_CMD_START: c_state <= #1 start_a;
`I2C_CMD_STOP: c_state <= #1 stop_a;
`I2C_CMD_WRITE: c_state <= #1 wr_a;
`I2C_CMD_READ: c_state <= #1 rd_a;
default: c_state <= #1 idle;
endcase
scl_oen <= #1 scl_oen; // keep SCL in same state
sda_oen <= #1 sda_oen; // keep SDA in same state
sda_chk <= #1 1'b0; // don't check SDA output
end
// start
start_a:
begin
c_state <= #1 start_b;
scl_oen <= #1 scl_oen; // keep SCL in same state
sda_oen <= #1 1'b1; // set SDA high
sda_chk <= #1 1'b0; // don't check SDA output
end
start_b:
begin
c_state <= #1 start_c;
scl_oen <= #1 1'b1; // set SCL high
sda_oen <= #1 1'b1; // keep SDA high
sda_chk <= #1 1'b0; // don't check SDA output
end
start_c:
begin
c_state <= #1 start_d;
scl_oen <= #1 1'b1; // keep SCL high
sda_oen <= #1 1'b0; // set SDA low
sda_chk <= #1 1'b0; // don't check SDA output
end
start_d:
begin
c_state <= #1 start_e;
scl_oen <= #1 1'b1; // keep SCL high
sda_oen <= #1 1'b0; // keep SDA low
sda_chk <= #1 1'b0; // don't check SDA output
end
start_e:
begin
c_state <= #1 idle;
cmd_ack <= #1 1'b1;
scl_oen <= #1 1'b0; // set SCL low
sda_oen <= #1 1'b0; // keep SDA low
sda_chk <= #1 1'b0; // don't check SDA output
end
// stop
stop_a:
begin
c_state <= #1 stop_b;
scl_oen <= #1 1'b0; // keep SCL low
sda_oen <= #1 1'b0; // set SDA low
sda_chk <= #1 1'b0; // don't check SDA output
end
stop_b:
begin
c_state <= #1 stop_c;
scl_oen <= #1 1'b1; // set SCL high
sda_oen <= #1 1'b0; // keep SDA low
sda_chk <= #1 1'b0; // don't check SDA output
end
stop_c:
begin
c_state <= #1 stop_d;
scl_oen <= #1 1'b1; // keep SCL high
sda_oen <= #1 1'b0; // keep SDA low
sda_chk <= #1 1'b0; // don't check SDA output
end
stop_d:
begin
c_state <= #1 idle;
cmd_ack <= #1 1'b1;
scl_oen <= #1 1'b1; // keep SCL high
sda_oen <= #1 1'b1; // set SDA high
sda_chk <= #1 1'b0; // don't check SDA output
end
// read
rd_a:
begin
c_state <= #1 rd_b;
scl_oen <= #1 1'b0; // keep SCL low
sda_oen <= #1 1'b1; // tri-state SDA
sda_chk <= #1 1'b0; // don't check SDA output
end
rd_b:
begin
c_state <= #1 rd_c;
scl_oen <= #1 1'b1; // set SCL high
sda_oen <= #1 1'b1; // keep SDA tri-stated
sda_chk <= #1 1'b0; // don't check SDA output
end
rd_c:
begin
c_state <= #1 rd_d;
scl_oen <= #1 1'b1; // keep SCL high
sda_oen <= #1 1'b1; // keep SDA tri-stated
sda_chk <= #1 1'b0; // don't check SDA output
end
rd_d:
begin
c_state <= #1 idle;
cmd_ack <= #1 1'b1;
scl_oen <= #1 1'b0; // set SCL low
sda_oen <= #1 1'b1; // keep SDA tri-stated
sda_chk <= #1 1'b0; // don't check SDA output
end
// write
wr_a:
begin
c_state <= #1 wr_b;
scl_oen <= #1 1'b0; // keep SCL low
sda_oen <= #1 din; // set SDA
sda_chk <= #1 1'b0; // don't check SDA output (SCL low)
end
wr_b:
begin
c_state <= #1 wr_c;
scl_oen <= #1 1'b1; // set SCL high
sda_oen <= #1 din; // keep SDA
sda_chk <= #1 1'b0; // don't check SDA output yet
// allow some time for SDA and SCL to settle
end
wr_c:
begin
c_state <= #1 wr_d;
scl_oen <= #1 1'b1; // keep SCL high
sda_oen <= #1 din;
sda_chk <= #1 1'b1; // check SDA output
end
wr_d:
begin
c_state <= #1 idle;
cmd_ack <= #1 1'b1;
scl_oen <= #1 1'b0; // set SCL low
sda_oen <= #1 din;
sda_chk <= #1 1'b0; // don't check SDA output (SCL low)
end
endcase
end
// assign scl and sda output (always gnd)
assign scl_o = 1'b0;
assign sda_o = 1'b0;
endmodule
二、IIC主机byte控制
// synopsys translate_off
`include "timescale.v"
// synopsys translate_on
`include "i2c_master_defines.v"
module i2c_master_byte_ctrl (
clk, rst, nReset, ena, clk_cnt, start, stop, read, write, ack_in, din,
cmd_ack, ack_out, dout, i2c_busy, i2c_al, scl_i, scl_o, scl_oen, sda_i, sda_o, sda_oen );
//
// inputs & outputs
//
input clk; // master clock
input rst; // synchronous active high reset
input nReset; // asynchronous active low reset
input ena; // core enable signal
input [15:0] clk_cnt; // 4x SCL
// control inputs
input start;
input stop;
input read;
input write;
input ack_in;
input [7:0] din;
// status outputs
output cmd_ack;
reg cmd_ack;
output ack_out;
reg ack_out;
output i2c_busy;
output i2c_al;
output [7:0] dout;
// I2C signals
input scl_i;
output scl_o;
output scl_oen;
input sda_i;
output sda_o;
output sda_oen;
//
// Variable declarations
//
// statemachine
parameter [4:0] ST_IDLE = 5'b0_0000;
parameter [4:0] ST_START = 5'b0_0001;
parameter [4:0] ST_READ = 5'b0_0010;
parameter [4:0] ST_WRITE = 5'b0_0100;
parameter [4:0] ST_ACK = 5'b0_1000;
parameter [4:0] ST_STOP = 5'b1_0000;
// signals for bit_controller
reg [3:0] core_cmd;
reg core_txd;
wire core_ack, core_rxd;
// signals for shift register
reg [7:0] sr; //8bit shift register
reg shift, ld;
// signals for state machine
wire go;
reg [2:0] dcnt;
wire cnt_done;
//
// Module body
//
// hookup bit_controller
i2c_master_bit_ctrl bit_controller (
.clk ( clk ),
.rst ( rst ),
.nReset ( nReset ),
.ena ( ena ),
.clk_cnt ( clk_cnt ),
.cmd ( core_cmd ),
.cmd_ack ( core_ack ),
.busy ( i2c_busy ),
.al ( i2c_al ),
.din ( core_txd ),
.dout ( core_rxd ),
.scl_i ( scl_i ),
.scl_o ( scl_o ),
.scl_oen ( scl_oen ),
.sda_i ( sda_i ),
.sda_o ( sda_o ),
.sda_oen ( sda_oen )
);
// generate go-signal
assign go = (read | write | stop) & ~cmd_ack;
// assign dout output to shift-register
assign dout = sr;
// generate shift register
always @(posedge clk or negedge nReset)
if (!nReset)
sr <= #1 8'h0;
else if (rst)
sr <= #1 8'h0;
else if (ld)
sr <= #1 din;
else if (shift)
sr <= #1 {sr[6:0], core_rxd};
// generate counter
always @(posedge clk or negedge nReset)
if (!nReset)
dcnt <= #1 3'h0;
else if (rst)
dcnt <= #1 3'h0;
else if (ld)
dcnt <= #1 3'h7;
else if (shift)
dcnt <= #1 dcnt - 3'h1;
assign cnt_done = ~(|dcnt);
//
// state machine
//
reg [4:0] c_state; // synopsys enum_state
always @(posedge clk or negedge nReset)
if (!nReset)
begin
core_cmd <= #1 `I2C_CMD_NOP;
core_txd <= #1 1'b0;
shift <= #1 1'b0;
ld <= #1 1'b0;
cmd_ack <= #1 1'b0;
c_state <= #1 ST_IDLE;
ack_out <= #1 1'b0;
end
else if (rst | i2c_al)
begin
core_cmd <= #1 `I2C_CMD_NOP;
core_txd <= #1 1'b0;
shift <= #1 1'b0;
ld <= #1 1'b0;
cmd_ack <= #1 1'b0;
c_state <= #1 ST_IDLE;
ack_out <= #1 1'b0;
end
else
begin
// initially reset all signals
core_txd <= #1 sr[7];
shift <= #1 1'b0;
ld <= #1 1'b0;
cmd_ack <= #1 1'b0;
case (c_state) // synopsys full_case parallel_case
ST_IDLE:
if (go)
begin
if (start)
begin
c_state <= #1 ST_START;
core_cmd <= #1 `I2C_CMD_START;
end
else if (read)
begin
c_state <= #1 ST_READ;
core_cmd <= #1 `I2C_CMD_READ;
end
else if (write)
begin
c_state <= #1 ST_WRITE;
core_cmd <= #1 `I2C_CMD_WRITE;
end
else // stop
begin
c_state <= #1 ST_STOP;
core_cmd <= #1 `I2C_CMD_STOP;
end
ld <= #1 1'b1;
end
ST_START:
if (core_ack)
begin
if (read)
begin
c_state <= #1 ST_READ;
core_cmd <= #1 `I2C_CMD_READ;
end
else
begin
c_state <= #1 ST_WRITE;
core_cmd <= #1 `I2C_CMD_WRITE;
end
ld <= #1 1'b1;
end
ST_WRITE:
if (core_ack)
if (cnt_done)
begin
c_state <= #1 ST_ACK;
core_cmd <= #1 `I2C_CMD_READ;
end
else
begin
c_state <= #1 ST_WRITE; // stay in same state
core_cmd <= #1 `I2C_CMD_WRITE; // write next bit
shift <= #1 1'b1;
end
ST_READ:
if (core_ack)
begin
if (cnt_done)
begin
c_state <= #1 ST_ACK;
core_cmd <= #1 `I2C_CMD_WRITE;
end
else
begin
c_state <= #1 ST_READ; // stay in same state
core_cmd <= #1 `I2C_CMD_READ; // read next bit
end
shift <= #1 1'b1;
core_txd <= #1 ack_in;
end
ST_ACK:
if (core_ack)
begin
if (stop)
begin
c_state <= #1 ST_STOP;
core_cmd <= #1 `I2C_CMD_STOP;
end
else
begin
c_state <= #1 ST_IDLE;
core_cmd <= #1 `I2C_CMD_NOP;
// generate command acknowledge signal
cmd_ack <= #1 1'b1;
end
// assign ack_out output to bit_controller_rxd (contains last received bit)
ack_out <= #1 core_rxd;
core_txd <= #1 1'b1;
end
else
core_txd <= #1 ack_in;
ST_STOP:
if (core_ack)
begin
c_state <= #1 ST_IDLE;
core_cmd <= #1 `I2C_CMD_NOP;
// generate command acknowledge signal
cmd_ack <= #1 1'b1;
end
endcase
end
endmodule
没有回复内容